Derivation of Ideal Op Amp Rules

Nodal Equations:

$$
\frac{v_{-}-v_{\text {in }}}{R_{1}}+\frac{v_{-}-v_{\text {out }}}{R_{f}}+\frac{v_{-}}{R_{i}}=0 \quad \text { and } \quad \frac{v_{\text {out }}-A v_{d}}{R_{o}}+\frac{v_{\text {out }}-v_{-}}{R_{f}}+\frac{v_{\text {out }}}{R_{L}}=0 \quad \text {, where } v_{d}=0-v_{-}
$$

Solving, we find:

$$
\nu_{-}=\frac{v_{s} / R_{1}}{\frac{A-R_{o} / R_{f}}{R_{f}+R_{o}\left(1+R_{f} / R_{L}\right)}+\frac{1}{R_{1}}+\frac{1}{R_{f}}+\frac{1}{R_{i}}} \quad \& v_{\text {out }}=\frac{v_{s} / R_{1}}{\frac{R_{f}+R_{o}\left(1+R_{f} / R_{L}\right)}{R_{o}-A R_{f}}\left(\frac{1}{R_{1}}+\frac{1}{R_{f}}+\frac{1}{R_{i}}\right)-\frac{1}{R_{f}}}
$$

Now, we consider the effects of the Op Amp parameters becoming ideal.
First, for as $R_{o} \rightarrow 0$ (while requiring $R_{L} \neq 0$) we find:

$$
v_{-} \rightarrow \frac{v_{s} / R_{1}}{\frac{A}{R_{f}}+\frac{1}{R_{1}}+\frac{1}{R_{f}}+\frac{1}{R_{i}}} \quad \& \quad v_{\text {out }} \rightarrow \frac{v_{s} / R_{1}}{\frac{-1}{A}\left(\frac{1}{R_{1}}+\frac{1}{R_{f}}+\frac{1}{R_{i}}\right)-\frac{1}{R_{f}}} \quad \text { for } R_{o} \rightarrow 0, R_{L} \neq 0
$$

Next, as $R_{i} \rightarrow \infty$ and $R_{f}<\infty$, we find:
$v_{-} \rightarrow \frac{v_{s} / R_{1}}{\frac{A}{R_{f}}+\frac{1}{R_{1}}+\frac{1}{R_{f}}} \quad \& \quad v_{\text {out }} \rightarrow \frac{v_{s} / R_{1}}{\frac{-1}{A}\left(\frac{1}{R_{1}}\right)-\frac{1}{R_{f}}} \quad$ for $R_{o} \rightarrow 0, R_{i} \rightarrow \infty, R_{L} \neq 0, R_{f}<\infty$
And finally, as $A \rightarrow \infty$, we have:
$v_{-} \rightarrow 0 \quad \& \quad v_{\text {out }} \rightarrow-\frac{R_{f}}{R_{1}} v_{s} \quad$ for $R_{o} \rightarrow 0, R_{i} \rightarrow \infty, A \rightarrow \infty, R_{L} \neq 0$
From these results, we can now formulate the "Ideal Op Amp Rules"

1) The currents into both input terminals are zero, because $R_{i} \rightarrow \infty$
2) Because $v_{d}=-v_{-} \rightarrow 0$ as long as $A \rightarrow \infty$ and $R_{f}<\infty$, we say that there is a virtual short across the input terminals.
3) And ... one thing you should NEVER do is to write a nodal equation at the output pin of an ideal Op Amp, since we DON'T KNOW in advance how much current is coming out of this pin. If you write a nodal equation at an output pin, you will die!
